Introduction	Theory	Results	Estimation	Conclusion

Fraternities and Labor Market Outcomes

Sergey V. Popov Mark Daniel Bernhardt

Department of Economics University of Illinois

23 Nov 2010

Sergey V. Popov, Dan Bernhardt

Department of Economics University of Illinois

Fraternities

- Fraternities are more than "club good":
 - too expensive
 - people mention them on resumes
- Fraternity affiliation has positive effect on expected wage.
- Firms and fraternities realize that.
- Fraternities conduct intensive screening of applicants.

Questions

We want to explain

- How people decide whether to pledge.
- How fraternities select students to admit.
- What are the implications of the outcome of the pledge game for the (expected) wages of students of different abilities.

Sergey V. Popov, Dan Bernhardt

Results Preview

- There is an equilibrium where everybody wants to join.
- There is an equilibrium where some people are accepted but do not apply.
 - It is not the highest types who earn the most from signaling.
 - It is lowest types who are admitted who earn the most.
 - Biggest losers are lowest types who are not admitted.
 - This is the empirical equilibrium, and fraternity membership is economically significant.

- New labor market participants are *students*, mass 1.
- Each student can be represented as a pair
 - $(\theta,\mu)\sim h(\cdot)>0.$
 - θ is student's potential productivity after employment.
 - μ is student's socializing value.
 - θ and μ are independent.
- Students like money and socializing.
- The representative fraternity likes students with high μ and students with high expected wage; has limited capacity.
- Firms offer competitive wages:
 - firms observe club membership and a signal about productivity $\tilde{\theta} \sim f_{\tilde{\theta}}(\cdot|\theta)$;
 - wage is equal to expected θ conditional on observables.

- New labor market participants are *students*, mass 1.
- Each student can be represented as a pair
 - $(\theta,\mu)\sim h(\cdot)>0.$
 - $\hat{\theta}$ is student's potential productivity after employment.
 - μ is student's socializing value.
 - θ and μ are independent.
- Students like money and socializing.
- The representative fraternity likes students with high μ and students with high expected wage; has limited capacity.
- Firms offer competitive wages:
 - firms observe club membership and a signal about productivity $\tilde{\theta} \sim f_{\tilde{\theta}}(\cdot|\theta)$;
 - wage is equal to expected θ conditional on observables.

- New labor market participants are *students*, mass 1.
- Each student can be represented as a pair
 - $(heta,\mu)\sim h(\cdot)>0.$
 - $\hat{\theta}$ is student's potential productivity after employment.
 - μ is student's socializing value.
 - θ and μ are independent.
- Students like money and socializing.
- The representative fraternity likes students with high μ and students with high expected wage; has limited capacity.
- *Firms* offer competitive wages:
 - firms observe club membership and a signal about productivity $\tilde{\theta} \sim f_{\tilde{\theta}}(\cdot|\theta)$;
 - wage is equal to expected θ conditional on observables.

- Students, having beliefs about distribution of other students in a fraternity, decide whether it is profitable to join the fraternity.
- 2 The fraternity picks an admittance rule.
- Some students become fraternity members; values of productivity signals are realized.
- ⁽²⁾ Firms, observing membership of students in fraternity, assign wages to combinations of $\tilde{\theta}$ and membership status.

In a rational expectations equilibrium, everyone's beliefs are consistent with actions of everyone.

Each firm observes a continuum of students with pdf $h(\theta, \mu)$, has a common knowledge of signaling technology $f_{\tilde{\theta}}(\tilde{\theta}|\theta)$, and knows the distribution of students

in (and out of) the fraternity

 $C(\theta,\mu) = I((\theta,\mu)$ is in the club)

Then the wage offered to a frat member with signal $\widetilde{\theta}$ is

$$w_{C}\left(\widetilde{\theta}\right) = \frac{\int \theta h(\theta, \mu) c(\theta, \mu) f_{\widetilde{\theta}}\left(\widetilde{\theta}|\theta\right) d\theta d\mu}{\int h(\theta, \mu) c(\theta, \mu) f_{\widetilde{\theta}}\left(\widetilde{\theta}|\theta\right) d\theta d\mu}$$

Sergey V. Popov, Dan Bernhardt

Student's Problem

Students anticipate wages offered by firms, and possess a common knowledge about signaling technology $f_{\tilde{\theta}}(\tilde{\theta}|\theta)$. Student (θ, μ) 's utility outside the fraternity is

$$U_{\bar{C}} = E_{\tilde{\theta}} \left[W_{\bar{C}}(\tilde{\theta}) | \theta \right]$$

Student (θ, μ) 's utility inside the fraternity is

$$U_{C} = E_{\widetilde{\theta}} \left[w_{C}(\widetilde{\theta}) | \theta \right] + n\mu - C$$

Students' solution is:

$$a(\theta,\mu) = I(U_C \ge U_{\bar{C}}|\theta,\mu) \qquad A = ((\theta,\mu)|a(\theta,\mu) = 1)$$

Sergey V. Popov, Dan Bernhardt

Student's Problem

$$U_{\bar{C}} = E_{\tilde{\theta}} \left[w_{\bar{C}}(\tilde{\theta}) | \theta \right]$$

Student (θ, μ) 's utility inside the fraternity is

$$U_{C} = E_{\widetilde{\theta}} \left[w_{C}(\widetilde{\theta}) | \theta \right] + n\mu - C$$

Students' solution is:

$$a(\theta,\mu) = I(U_C \ge U_{\bar{C}}|\theta,\mu) \qquad A = ((\theta,\mu)|a(\theta,\mu) = 1)$$

Sergey V. Popov, Dan Bernhardt

Student's Problem

$$U_{\bar{C}} = E_{\tilde{\theta}} \left[w_{\bar{C}}(\tilde{\theta}) | \theta \right]$$

Student (θ, μ) 's utility inside the fraternity is

$$U_{C} = E_{\widetilde{\theta}} \left[w_{C}(\widetilde{\theta}) | \theta \right] + n\mu - C$$

Students' solution is:

$$a(\theta,\mu) = I(U_C \ge U_{\bar{C}}|\theta,\mu) \qquad A = ((\theta,\mu)|a(\theta,\mu) = 1)$$

Sergey V. Popov, Dan Bernhardt

The Fraternity's Problem

The fraternity observes set *A* and anticipates same wage functions as students do, and picks set *B* of admitted people. Club's utility function is assumed to be

$$\begin{split} W(B) &= W_1 \int_{A \bigcap B} E_{\tilde{\theta}} W_C(\tilde{\theta}|\theta) dH(\theta,\mu) + W_2 \int_{A \bigcap B} \mu dH(\theta,\mu) \\ \text{s.t.} \ \int_{A \bigcap B} h(\theta,\mu) d\mu d\theta \leq \Gamma \end{split}$$

Here Γ is a fraternity's capacity constraint. Intersection of sets of wishing students *A* and admitted students *B* is the set *C* — fraternity members.

Sergey V. Popov, Dan Bernhardt

Cutoff Rules

Proposition

There is a cutoff $\mu_A(\theta)$ such that people with μ bigger than that pledge.

Proposition

There is a cutoff $\mu_B(\theta)$ such that people with μ bigger than that are admitted.

Proposition

If signaling technology has a MLRP property, $\mu_B(\theta)$ is decreasing in θ .

Sergey V. Popov, Dan Bernhardt

Department of Economics University of Illinois

Cutoff Rules

Proposition

There is a cutoff $\mu_A(\theta)$ such that people with μ bigger than that pledge.

Proposition

There is a cutoff $\mu_B(\theta)$ such that people with μ bigger than that are admitted.

Proposition

If signaling technology has a MLRP property, $\mu_B(\theta)$ is decreasing in θ .

Sergey V. Popov, Dan Bernhardt

Department of Economics University of Illinois

Estimation

Conclusion

Fraternity's Cutoff Rule

Sergey V. Popov, Dan Bernhardt

Department of Economics University of Illinois

Need Imprefect But Good Signaling

Proposition

If signals $\tilde{\theta}$ are perfectly revealing, fraternity membership in equilibrium does not affect wages.

Proposition

If signals $\tilde{\theta}$ are useless, fraternity membership in equilibrium does not affect wages.

Sergey V. Popov, Dan Bernhardt

Assume $(\theta, \mu) \in [0, 1]^2$, and (θ, μ) are uniformly distributed. Also assume that three productivity signals are possible: *H*, *M* and *L*.

$$P(\tilde{\theta} = L|\theta) = 1 - 2\theta, \theta \in [0, \frac{1}{2}] \qquad P(\tilde{\theta} = H|\theta) = 2\theta, \theta \in [\frac{1}{2}, 1]$$

Then two classes of nontrivial equilibria can be observed.

Sergey V. Popov, Dan Bernhardt

Conclusion

Application-Unconstrained Equilibrium

Sergey V. Popov, Dan Bernhardt

Department of Economics University of Illinois

Estimation

Conclusion

Application-Constrained Equilibrium

Sergey V. Popov, Dan Bernhardt

Department of Economics University of Illinois

Estimation

Wages Structure

Sergey V. Popov, Dan Bernhardt

Department of Economics University of Illinois

Estimation

Single-Peaked Equilibria

Assumption

Either the support for signals $\tilde{\theta}$ is finite, or the support of $f_{\tilde{\theta}}(\tilde{\theta}|\bar{\theta})$ is non-trivial.

Assumption

The cost c of joining the fraternity satisfies $n\underline{\mu} + \overline{\theta} - E[\theta] < c < n\overline{\mu} + \overline{\theta} - E[\theta].$

Proposition

Suppose that Assumptions 1 and 2 hold, and the fraternity is small enough, the equilibrium is single-peaked.

Sergey V. Popov, Dan Bernhardt

Department of Economics University of Illinois

Estimation

Data - UIUC Fraternities

- 8634 GPAs of seniors in Fall of 2007.
- 701 GPAs of fraternity/sorority members in Fall of 2007.
- Cannot match no other info.

$$P(\Phi|\text{GPA}) = P(\Phi) \frac{f_{\text{GPA}}(\text{GPA}|\Phi)}{f_{\text{GPA}}(\text{GPA})}$$

Consistent estimates of $f(\cdot)$ densities will yield consistent estimate of quantity of members conditional on GPA.

Sergey V. Popov, Dan Bernhardt

Estimation

Conclusion

Data - UIUC Fraternities

- 8634 GPAs of seniors in Fall of 2007.
- 701 GPAs of fraternity/sorority members in Fall of 2007.
- Cannot match no other info.

$$P(\Phi|\text{GPA}) = P(\Phi) rac{f_{\text{GPA}}(\text{GPA}|\Phi)}{f_{\text{GPA}}(\text{GPA})}$$

Consistent estimates of $f(\cdot)$ densities will yield consistent estimate of quantity of members conditional on GPA.

Sergey V. Popov, Dan Bernhardt

Estimation

Conclusion

Data - UIUC Fraternities

- 8634 GPAs of seniors in Fall of 2007.
- 701 GPAs of fraternity/sorority members in Fall of 2007.
- Cannot match no other info.

$$P(\Phi|\text{GPA}) = P(\Phi) rac{f_{\text{GPA}}(\text{GPA}|\Phi)}{f_{\text{GPA}}(\text{GPA})}.$$

Consistent estimates of $f(\cdot)$ densities will yield consistent estimate of quantity of members conditional on GPA.

Department of Economics University of Illinois

- Treat quantiles of GPA as "true" ability.
- Take 20 equispaced points of θ and estimates of $P(\Phi|\theta)$.
- Use the three-signal model, fit pseudopoints into 2-kink cutoff line with OLS.
- Add the condition that the cutoff is consistent with the model.

Sergey V. Popov, Dan Bernhardt

OLS Estimation

Sergey V. Popov, Dan Bernhardt

Department of Economics University of Illinois

Resul

Estimation

Conclusion

Structural Estimation

Sergey V. Popov, Dan Bernhardt

Department of Economics University of Illinois

Resul

Estimation

Parameters

Parameter	Estimate	95% confidence
n	0.2771	(0.1193, 0.5312)
С	0.2281	(0.0895, 0.4449)
c/n	0.8234	(0.7141,0.8147)
W_{1}/W_{2}	0.2227	(0.0565, 0.3346)
Г	0.1563	(0.1546, 0.1577)

Sergey V. Popov, Dan Bernhardt

Department of Economics University of Illinois

Resul

Estimation

Welfare Implications

Comparison to No Fraternity situation

μ

Sergey V. Popov, Dan Bernhardt

Department of Economics University of Illinois

Estimation

Welfare Implications

Comparison to No Wage Shift situation

μ

Sergey V. Popov, Dan Bernhardt

Department of Economics University of Illinois

Conclusion

- Frat members earn higher (on average) wage than non-members.
- In not necessarily so when condition on true ability.
- There are two types of equilibria:
 - application-constrained ("single-peaked");
 - application-unconstrained (" $\Phi BK''$).
- Single-peaked equilibrium exists very generally.
- We get single-peaked fraternity in estimates.
- Single-peaked" effect is damaging for highly-able member students...
- … damaging for low-able non-members…
- In beneficial for low-type members.

Sergey V. Popov, Dan Bernhardt